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Exercise 1 (8.1.6). Show that lim(arctannx) = (π/2)sgnx for x ∈ R.

Proof. We claim that

lim(arctannx) =


−π/2, x < 0,

0, x = 0,

π/2, x > 0.

Indeed, since arctannx is a odd function, it suffices to consider the case x > 0. Let x > 0
and ε > 0, then for n > [x−1 tan(π/2− ε)] + 1, we have

nx > tan(
π

2
− ε),

therefore
π

2
− ε < arctannx <

π

2
,

which implies that

lim
n→∞

arctannx =
π

2
.

□

Exercise 2 (8.1.16). Show that if a > 0, then the convergence of the sequence in Exercise
6 is uniform on the interval [a,∞), but is not uniform on the interval (0,∞).

Proof. Let ε > 0, then for n > [a−1 tan(π/2− ε)] + 1, we have

nx > tan(
π

2
− ε),

for x ≥ a, therefore
π

2
− ε < arctannx <

π

2
,

which implies that

arctannx ⇒
π

2
on [a,∞).

Consider xn = 1/n, then

| arctannxn −
π

2
sgn

1

n
| = |π

4
− π

2
sgn

1

n
| ≥ π

4
,

which implies that the convergence is not uniform on (0,∞). □

Exercise 3 (8.1.19). Show that the sequence (x2e−nx) converges uniformly on [0,∞).

Proof. Let ε > 0, then for n > [
√
4e−2ε−1] + 1, we have

0 ≤ x2e−nx < ε,

for all x ≥ 0, which implies that

x2e−nx ⇒ 0 on [0,∞].

□
1
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Exercise 4 (8.1.23). Let (fn), (gn) be sequences of bounded functions on A that converge
uniformly on A to f , g, respectively. Show that (fngn) converges uniformly on A to fg.

Proof. Let ε > 0, since (fn) and (gn) uniformly converge to f and g respectively, there exists
a N ∈ N such that for n > N , we have

|fn(x)− f(x)| < ε

2
, |gn(x)− g(x)| < ε

2
,

for x ∈ A. Moreover, since fN+1 and gN+1 are bounded on A, there exists a constant C > 0
such that

(1) |f(x)| ≤ |fN+1(x)|+
ε

2
< C, |g(x)| ≤ |gN+1(x)|+

ε

2
< C,

which implies that f and g are bounded. Then

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)− f(x)| · |g(x)|+ |f(x)| · |gn(x)− g(x)| < Cε,

which implies that (fngn) converges uniformly on A to fg. □

Exercise 5 (8.2.9). Let fn(x) := xn/n for x ∈ [0, 1]. Show that the sequence (fn) of
differentiable functions converges uniformly to a differentiable function f on [0, 1], and that
the sequence (f ′

n) converges on [0, 1] to a function g, but that g(1) ̸= f ′(1).

Proof. We claim that (fn) uniformly converges to 0 on [0, 1]. Indeed, let ε > 0, then for
n > ε, we have

0 ≤ fn(x) < ε,

for x ∈ [0, 1], which implies that
fn ⇒ 0 on [0, 1].

In addition, we claim that (f ′
n) converges to g on [0, 1], where g is defined as

g(x) :=

{
0, 0 ≤ x < 1,

1, x = 1.

Indeed, for x ∈ [0, 1), let ε > 0, for n > x−n+1, we have

0 ≤ f ′
n(x) < ε,

which implies that f ′
n converges to 0 on [0, 1). Moreover, Since f ′

n(x) = xn−1, we have (f ′
n)

converges to 1 at x = 1.
Therefore it is clear that g(1) ̸= f ′(1). □

Exercise 6 (8.2.12). Show that lim
∫ 2

1
e−nx2

dx = 0.

Proof. We claim that (e−nx2
) uniformly converges to 0 on [1, 2]. Therefore

lim
n→∞

∫ 2

1

e−nx2

dx = 0.

Indeed, let ε > 0, then for n > ln ε, we have

0 < e−nx2

< ε,

which implies that (e−nx2
) uniformly converges to 0 on [1, 2]. □


