SUGGESTED SOLUTIONS TO HOMEWORK 8

Exercise 1 (8.1.6). Show that $\lim(\arctan nx) = (\pi/2) \operatorname{sgn} x$ for $x \in \mathbb{R}$.

Proof. We claim that

$$\lim(\arctan nx) = \begin{cases} -\pi/2, & x < 0, \\ 0, & x = 0, \\ \pi/2, & x > 0. \end{cases}$$

Indeed, since $\arctan nx$ is a odd function, it suffices to consider the case x > 0. Let x > 0and $\varepsilon > 0$, then for $n > [x^{-1} \tan(\pi/2 - \varepsilon)] + 1$, we have

$$nx > \tan(\frac{\pi}{2} - \varepsilon),$$

therefore

$$\frac{\pi}{2} - \varepsilon < \arctan nx < \frac{\pi}{2},$$

which implies that

$$\lim_{n \to \infty} \arctan nx = \frac{\pi}{2}.$$

Exercise 2 (8.1.16). Show that if a > 0, then the convergence of the sequence in Exercise 6 is uniform on the interval $[a, \infty)$, but is not uniform on the interval $(0, \infty)$.

Proof. Let
$$\varepsilon > 0$$
, then for $n > [a^{-1} \tan(\pi/2 - \varepsilon)] + 1$, we have
 $nx > \tan(\frac{\pi}{2} - \varepsilon)$,

for $x \ge a$, therefore

$$\frac{\pi}{2} - \varepsilon < \arctan nx < \frac{\pi}{2},$$

which implies that

$$\arctan nx \Longrightarrow \frac{\pi}{2}$$
 on $[a, \infty)$.

Consider $x_n = 1/n$, then

$$|\arctan nx_n - \frac{\pi}{2}\operatorname{sgn}\frac{1}{n}| = |\frac{\pi}{4} - \frac{\pi}{2}\operatorname{sgn}\frac{1}{n}| \ge \frac{\pi}{4}$$

which implies that the convergence is not uniform on $(0, \infty)$.

Exercise 3 (8.1.19). Show that the sequence (x^2e^{-nx}) converges uniformly on $[0,\infty)$.

Proof. Let $\varepsilon > 0$, then for $n > [\sqrt{4e^{-2}\varepsilon^{-1}}] + 1$, we have $0 \le x^2 e^{-nx} < \varepsilon$,

for all $x \ge 0$, which implies that

$$x^2 e^{-nx} \rightrightarrows 0$$
 on $[0, \infty]$.

Exercise 4 (8.1.23). Let (f_n) , (g_n) be sequences of bounded functions on A that converge uniformly on A to f, g, respectively. Show that (f_ng_n) converges uniformly on A to fg.

Proof. Let $\varepsilon > 0$, since (f_n) and (g_n) uniformly converge to f and g respectively, there exists a $N \in \mathbb{N}$ such that for n > N, we have

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}, \quad |g_n(x) - g(x)| < \frac{\varepsilon}{2},$$

for $x \in A$. Moreover, since f_{N+1} and g_{N+1} are bounded on A, there exists a constant C > 0 such that

(1)
$$|f(x)| \le |f_{N+1}(x)| + \frac{\varepsilon}{2} < C, \quad |g(x)| \le |g_{N+1}(x)| + \frac{\varepsilon}{2} < C,$$

which implies that f and g are bounded. Then

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x) - f(x)| \cdot |g(x)| + |f(x)| \cdot |g_n(x) - g(x)| < C\varepsilon,$$

which implies that $(f_n g_n)$ converges uniformly on A to fg.

Exercise 5 (8.2.9). Let $f_n(x) := x^n/n$ for $x \in [0,1]$. Show that the sequence (f_n) of differentiable functions converges uniformly to a differentiable function f on [0,1], and that the sequence (f'_n) converges on [0,1] to a function g, but that $g(1) \neq f'(1)$.

Proof. We claim that (f_n) uniformly converges to 0 on [0,1]. Indeed, let $\varepsilon > 0$, then for $n > \varepsilon$, we have

$$0 \le f_n(x) < \varepsilon,$$

for $x \in [0, 1]$, which implies that

$$f_n \rightrightarrows 0$$
 on $[0,1]$.

In addition, we claim that (f'_n) converges to g on [0, 1], where g is defined as

$$g(x) := \begin{cases} 0, & 0 \le x < 1\\ 1, & x = 1. \end{cases}$$

Indeed, for $x \in [0, 1)$, let $\varepsilon > 0$, for $n > x^{-n+1}$, we have

$$0 \le f_n'(x) < \varepsilon,$$

which implies that f'_n converges to 0 on [0, 1). Moreover, Since $f'_n(x) = x^{n-1}$, we have (f'_n) converges to 1 at x = 1.

Therefore it is clear that $g(1) \neq f'(1)$.

Exercise 6 (8.2.12). Show that $\lim_{x \to 0} \int_{1}^{2} e^{-nx^{2}} dx = 0.$

Proof. We claim that (e^{-nx^2}) uniformly converges to 0 on [1,2]. Therefore

$$\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = 0$$

Indeed, let $\varepsilon > 0$, then for $n > \ln \varepsilon$, we have

$$0 < e^{-nx^2} < \varepsilon,$$

which implies that (e^{-nx^2}) uniformly converges to 0 on [1,2].